Watched Data Structures for QBF Solvers

Ian Gent', Enrico Giunchiglia?, Massimo Narizzano?, Andrew Rowley', and
Armando Tacchella?

! Dept. of Computer Science, University of St. Andrews
? DIST - Universita di Genova

Abstract. In the last few years, we have seen a tremendous boost in
the capacity of SAT solvers, such boost mostly due to CHAFF. CHAFF
owes some of its efficiency to its “two-literal watching” data structure.
In this paper we present watched data structures for Quantified Bolean
Formula (QBF) satisfiability solvers. In particular, we propose (i) two
CuAFF-like literal watching schemes for unit clause detection; (ii) a
“clause watching” schema suited for detecting pure literals; and (4i%)
a “quantifier watching” schema for the detection of void quantifiers. We
have conducted an experimental evaluation of the proposed data struc-
tures, using both randomly generated and real-world benchmarks. Our
preliminary results indicate that clause watching is very effective, while
the other data structures do not have significant effects.

1 Introduction

In the last few years, we have seen a tremendous boost in the capacity of SAT
solvers, such boost mostly due to CHAFF. CHAFF is based on DPLL proce-
dure [1,2], and owes part of its efficiency to its data structures designed for
the specific look-ahead it implements, i.e., unit-propagation. The basic idea is
to detect unit clauses by watching two unassigned literals per clause. As soon
as one of the watched literals is assigned, another unassigned literal is looked
for in the clause: failure to find one implies that the clause is unit. The main
advantage of any such procedure is that, when a literal is given a truth value,
only its watched occurrences are assigned. This is to be contrasted to traditional
DPLL implementations where, when assigning a variable, all its occurrences are
considered. This simple idea can be realized in various ways, differing for the spe-
cific operations done when assigning a watched literal or when backtracking (see,
e.g., [3-5]). In CHAFF, backtracking requires a constant number of operations.
See [4] for more details.

In this paper we tackle the problem of designing, implementing and exper-
imenting with watching data structures for DPLL-based QBF solvers. In par-
ticular, we propose (i) two CHAFF-like literal watching schemes for unit clause
detection; (i7) a “clause watching” schema suited for detecting pure literals; and
(iii) a “quantifier watching” schema for the detection of void quantifiers. We
have implemented such watching structures, and we conducted an experimental
evaluation, using both randomly generated and real-world benchmarks. Our pre-
liminary results indicate that clause watching is very effective, while the other

Ol LAC U Zyl_ﬂbl

www.manaraa.com

data structures do not have significant effects. We are currently running a wider
set of benchmarks, whose results will be presented in the full paper.

The paper is structured as follows. We first introduce some basic terminology
and notation (§2). In §3, we briefly present the standard data structures, leaving
their detailed presentation to the full paper. The watched data structures that
we propose are comprehensively described in §4. We end the paper with the
experimental analysis (§5).

2 Basic definitions

We take for granted the definitions of variable, literal, clause. Notationally, if
is a literal, we write [as an abbreviation for x if | = -z, and for =/ otherwise.
A @QBF is an expression of the form

Q11 ... Qrxn® (n >0) (1)

where every Q; (1 < i < n) is a quantifier (either existential 3 or universal V);
x1,...,%, are sets of variables; and @ is a set of clauses in &1 U ... U x,. We
assume that no variable occurs twice in a clause; that a1, ..., 2, are pairwise
disjoint; and that Q; # Qi+1 (1 <i<n). In (1), Qi1@1 ... Qnxn is the prefix, &
is the matrix, and @; is the bounding quantifier of each variable in x;.

The semantics of a QBF ¢ can be defined recursively as follows:

1. If the matrix of ¢ contains an empty clause then ¢ is FALSE.

2. If the matrix of ¢ is the empty set of clauses then ¢ is TRUE.

3. If p is dx1p and = € x, ¢ is TRUE if and only if ¢, or ¢, are TRUE.
4. If ¢ is Vayp and z € x, ¢ is TRUE if and only if ¢, and ¢—, are TRUE.

If p is a QBF and [is a literal, ¢; is the QBF

1. whose matrix & is obtained from the matrix of ¢ by deleting the clauses C'
such that ! € C, and removing ! from the others, and

2. whose prefix is obtained from the prefix of ¢ by deleting the variables not
occurring in @. Void quantifiers (i.e., quantifiers not binding any variable)
are also eliminated.

As usual, we say that a QBF ¢ is satisfiable iff ¢ is TRUE.

On the basis of the semantics, a simple recursive procedure for determining
the satisfiability of a QBF ¢, simplifies ¢ to ¢, and/or ¢, if z is in the leftmost
set of variables in the prefix, until either an empty clause or the empty set
of clauses is produced: On the basis of the satisfiability of ¢, and ¢—-,, the
satisfiability of ¢ can be determined according to the semantics of QBFs.

Most of the current QBF solvers are based on such simple procedure. How-
ever, in order to prune the search tree, they introduce some improvements.

The first improvement is that it is possible to directly conclude that a QBF
is unsatisfiable if the matrix contains a contradictory clause, i.e., a clause with
no existential literals. (Notice that the empty clause is also contradictory).

Then, if a literal [is unit or pure in a QBF ¢, then ¢ can be simplified to
1. We say that a literal [is

Ol LAC U Zyl_ﬂbl

www.manaraa.com

— Unit if the matrix contains a unit clause in [, i.e., a clause of the form
{Ll,..., L} (m > 0) with (4) [existential; and (ii) each literal [; (1 <i <
m) universally quantified inside the quantifier binding . For example, both
1 and x5 are unit in any QBF of the form:

e E|x1VylE|m2 e {{l‘l,yl}, {.’BQ}, .. }

— Pure if either [is existential and I does not belong to any clause in &; or I
is universal and [does not belong to any clause in @. For example, in the
following QBF, the pure literals are y; and z1:

Vy13z1Vya 3o {1, y2, 22}, {x1, ~y22} .

In the above example, notice that after y; and x; are assigned, -y, can be
assigned because is pure, and then z, can be assigned because is unit. This
simple example shows the importance of implementing pure literal fixing in
QBFs: The assignment of a pure existential literal may cause the detection
of a pure universal literal, and the assignment of a pure universal literal may
cause the detection of unit literals.

Finally, all QBF solvers implement some heuristic in order to decide the best
(among those admissible) literal to be used for branching.

3 Unwatched Data Structures

The main requirements of any data structure in a QBF solver is to detect key
events. The key events that we want to detect are

1. The occurrence of unit or pure literals.

2. The presence of contradictory clauses in the matrix.

3. The presence of void quantifiers in the prefix: This allows the removal of the
quantifier from the prefix.

4. The presence of the empty set of clauses: This allows to immediately back-
track to the last universal variable whose right branch has not been explored
yet.

All such events are to be detected while descending the search tree assigning
variables. When a variable is assigned, data structures get updated and each
condition checked. Of course, changes are stored so that they can be undone
while backtracking. Here we briefly describe how such events are detected in our
standard procedure. All details will be given in the full paper.

Unit literals and contradictory clauses, assuming a literal [is assigned true,
are detected while removing [from any clauses it occurs in. To perform this
operation more efficiently, each clause is first sorted into existential and universal
literals. These sets are then sorted into the order in which the variables occur in
the prefix. Further, since a literal can be removed from any point in the clause,
it is assumed that a linked list data structure is used to hold the literals.

Ol LAC U Zyl_ilsl

www.manaraa.com

For pure literals, we store which clauses a variable’s literals are contained
in. In the same way that a clause contains literals, a variable can be thought
to contain c-literals. Each of these c-literals consists of a clause and a sign. The
sign of the c-literal is the same as the sign of the literal of the variable in the
clause. The c-literals are then stored in the variable, split into negative and
positive c-literals. Again, a linked list data structure allows removal of any c-
literal efficiently. When a clause is removed, its c-literals of the clause can be
removed from the variables left in the clause. Pure literals have no positive or
no negative c-literals.

For void quantifiers, the procedure is the same since we can think of a quan-
tifier in a similar way to a clause: A quantifier contains g-variables, which consist
of a variable and a quantification. As with literals in clauses, a linked list data
structure is required here to allow removal from any part of the quantifier. When
a g-variable is assigned, it is removed from the quantifier in which it occurs.

For detecting the empty matrix, we keep a count of the number of clauses.
When a clause is marked as removed, this count is decremented and when a
clause is restored, the count is incremented: Clauses are never actually removed.

4 Watched Data Structures

As has been demonstrated in SAT solvers such as CHAFF, lazy data structures
can be more efficient. This is attributed also to the fact that cache memory
is used more efficiently. One of the requirements of these data structures that
make this true is that no work should be done on the data structure during
backtracking. To allow this to happen, no literals are ever removed from clauses,
and similarly for g-variables in quantifiers and c-literals in clauses. This allows
all the data structures to use arrays in place of linked lists. Here we outline two
data structures for watching literals, and one each for clauses and quantifiers.

4.1 Two Literal Watching

In SAT solvers, two literal watching is used for the removal of clauses in addition
to the removal of literals from clauses. In a SAT solver, we are only interested
in finding a solution; once this has been done, no backtracking is required. This
means that we do not care how many variable assignments it takes to get to
the solution, or if these variable assignments are superfluous. In QBF solvers
this is no longer the case. We are likely to need to backtrack upon finding a
solution and so it is important that the empty set of clauses is detected as soon
as possible, and that no variable assignments are made that are not absolutely
necessary. To facilitate this, when assigning a literal, [, true, we only deal with
watched literals from clauses containing I, but remove all clauses containing [.
The invariants that we wish to uphold in a clause are as follows:

1. The clause contains a true literal and is therefore removed.
2. The clause contains no true existential literals and is therefore false.

Ol LAC U Zyl_ﬂbl

www.manaraa.com

3. The clause contains one unassigned existential literal and all unassigned
universals are quantified inside the existential and is therefore unit.

4. The clause contains two unassigned watched existential literals.

5. The clause contains one unassigned watched existential literal and one unas-
signed watched universal literal quantified outside the existential.

These should hold in such a way that nothing has to be done upon backtracking.
As before, we assume the literals of the clause are sorted. When removing a literal
from a clause, if ever we find a literal that satisfies the clause, the operation is
stopped.

If the initial literal is an existential, e,;4, the rules are as follows:

1. If we find an unassigned, unwatched existential, ey, to the right of the
current one, watch eyeq. Due to sorting, e,e,, must be inside e, q, and so
invariant 5 can still hold.

. Scan left to find an unassigned, unwatched existential, ey¢q, -

3. If we found the other pointer, and e,¢.,, watch e,.,,. There must still be two

existentials watched.

4. If we didn’t find a new pointer or the other pointer, the clause is now con-
tradictory.

5. If we found the other pointer €,sper, but not ey, we must scan the universals
from the left to find an unassigned, unmarked universal, .., quantified
outside ey iper-

(a) If we find wpeq, watch it.
(b) If we don’t, we have a unit clause in e,;per.

6. If we didn’t find the other pointer, but found e,,.,,, we must carry on scanning
to the left to find the other pointer. If we encounter another unassigned
unwatched existential, call it €,e42.

(a) If we find the other pointer, watch the new existential. There must still
be two existentials watched.
(b) If we don’t, we must scan the universals to find the watched universal,

N

Uother-
i. If we found e,y and €,e2, Watch e, in place of €, and epeq2 in

place of uptper.
ii. If uopper is quantified outside €,04, Watch e€peq-
iii. If wosper is quantified inside €,¢,,, we must scan to the left to find a
new universal, uyeqy, that is quantified outside the existential.
A. If this is not possible, the clause is unit in e,y .
B. If it is found, watch e,., and move the ugiper pointer to Uney -

If the initial literal is a universal, u,;q, the rules are as follows:

1. Scan to the left and try to find an unwatched existential, ey, or the exis-
tential watched literal, es¢per-

2. If we find e,,¢,,, watch it. It makes more sense to be watching two existentials
if possible.

3. If we find e,¢per but not e,¢,,, we must scan left and right over the universals

to find one that is quantified outside e tper.
(a) If we find it, we watch it.
(b) If we don’t, the clause must be unit in e¢per-

Ol LAC U Zyl_ilsl

www.manaraa.com

4.2 Three Literal Watching

In the above, we can be watching an existential and a universal as in invariant
5 but there might be two unassigned existentials in the clause. To reference this
problem, we suggest a method where by three literals are watched in a clause: two
existentials, and one universal. The invariants for this are as follows (invariants
1-3 are as above):

4. watched existentials are both unassigned.

5. One of the two watched existentials is assigned, and the watched univer-
sal literal is unassigned and is quantified outside the watched unassigned
existential literal.

In order to determine the other watched literals in the clause as quickly as
possible, each clause contains a set of watched literals. These point to the actual
watched literals in the clause. It is now less important that the existential literals
in the clause are sorted, but universal sorting is still important, since we still
need to scan for universals with a proper position in the prefix. As before, search
is stopped if a literal that satisfies the clause is found.

If the initial literal is an existential, e,;q, the rules are as follows:

1. Determine the other existential watched literal, e,iper, and the universal
watched literal wu.
2. If epeper is assigned false, find a universal literal, us,¢ that satisfies the clause.
(a) If ugqt exists, stop.
(b) If usqt does not exist, the clause is contradictory.
3. If eyther is unassigned find another unwatched existential literal, epeq-
(a) If epen exists, watch it.
(b) If epey does not exist, scan the universals to the right until an unassigned
universal uy,q, 18 found that is quantified outside eypep.
i. If wyeq exists, watch it.
ii. If upeq does not exist, the clause is unit in e per.

If the initial literal is universal, the rules are as follows:

1. Determine the existential watched literals, e; and es.

. If e; and ey are both unassigned, stop.

3. If only one of e; and es are assigned, scan the universals until an unassigned
universal, e, is found that is quantified outside the unassigned existential
watched literal.

(a) If upe, exists, watch it.
(b) If wpeq, does not exist, the clause is unit.

[\

4.3 Clause Watching

In clause watching, we need to detect if either or both of the signs of the c-literals
become empty. For this, we require two watched c-literals per variable, one of
positive sign, and the other of negative sign.

The invariants for c-literal watching are:

www.manaraa.com

1. The variable is pure in one or other of the signs.
2. The variable is removed.
3. There are two watched c-literals in the variable, one of each sign.

When a c-literal is removed, the rules are as follows:

1. Search for a new c-literal of the same sign, cpeqp-
(a) If cpey exists, watch it.
(b) If ¢pew does not exist, search for an unassigned c-literal of the opposite
sign, ¢,.
i. If ¢, exists, the variable is pure in the sign of ¢,.
ii. If ¢, does not exist, the variable is removed.

4.4 Quantifier Watching

In two literal watching in SAT solvers, the two literals allow us to detect when a
clause only contains one item, as well as when it is empty. In quantifier watching,
we only need to know when the quantifier is empty, and for this, only one watched
q-variable is needed per quantifier.

The invariants for g-variable watching are:

1. The quantifier is empty and so removed.
2. There is one watched unassigned g-variable in the quantifier.

When we remove the watched g-variable, g.;4, the rules are as follows:

1. Search left and right for an unassigned g-variable, gneq -
(a) If gpney exists, watch it.
(b) If gnew does not exist, remove the quantifier.

5 Experimental Analysis

We implemented the above ideas in a QBF solvers featuring both conflict and
solution directed backjumping [6]. In order to test the effectiveness of the watched
data structures, we run the 5 different versions of the solver:

CSBJ represents the basic solver with the standard data structures,
CSBJ+2WL is ¢SBJ plus two literal watching, as described in § 4.1,
CSBJ+3WL is CSBJ plus three literal watching, as described in § 4.2,
CSBJ+WCL is €SBJ plus watching clauses, as described in § 4.3, and
CSBJ+WQT is CSBJ plus watching quantifiers, as described in § 4.4.

CUR LN =

We considered all the 322 real world problems available at www.qbflib.org,
excluding the robot problems. Of these 322 problems, all the solvers (i) timed out
on 93, and (i7) were able to solve 28 in 0 seconds. The results on the remaining
201 problems are shown in Figure 1. In the figure, on the y-axis there is the
time taken by each procedure to solve the number of instances specified on the
z-axis. The time out is 7200s.

www.manaraa.com

10 T T T T T T T T T

o4
—<— CSBJ bl
CSBI+WQT 1
< CSBJ+2WL ’
10° L CSBJ+3WL I _
—©— CSBJ+WCL y
10° |
j22)
£
1
= 10"
]
o
o
10° |

10 "

2

10~

—— L L L L L L L L
20 40 60 80 100 120 140 160 180 200
of PROBLEMS

Fig. 1. Performances of ¢SBJ augmented with watched data structures on real-world
instances.

As it can be seen, neither the two nor the three literal watching structures
cause a speed-up in the performances. One reason could be that the average
length of clauses is 3.8. On the positive side, we see that watching clauses provides
a significant boost: For example, to solve 167 instances out of the 201 considered,
CSBJ+WCL takes 10s, while the other solvers take 100s.

We have considered also instances randomly generated according to model A
of [7]. The results that we got are similar: watching literal and quantifiers do not
produce benefits, while watching clauses can give orders of magnitude speed-ups.
These and other experimental results will be presented in the full paper.

References

1. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7 (1960) 201-215

2. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Journal of the ACM 5 (1962)

3. Zhang, H., Stickel, M.E.: An efficient algorithm for unit propagation. In: Proceedings
of the Fourth International Symposium on Artificial Intelligence and Mathematics
(AI-MATH’96), Fort Lauderdale (Florida USA) (1996)

4. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an Efficient SAT Solver. In: Proc. DAC. (2001)

5. Lynce, I., Marques-Silva, J.: Efficient data structures for fast sat solvers. In: Pro-
ceedings of the 5th International Symposium on the Theory and Applications of
Satisfiability Testing (SAT’02). (2002)

6. Giunchiglia, E., Narizzano, M., Tacchella, A.: Backjumping for Quantified Boolean
Logic Satisfiability. Artificial Intelligence 144 (2003)

7. Gent, I., Walsh, T.: Beyond NP: the QSAT phase transition. In: Proc. AAAI (1999)
648-653

www.manaraa.com

