
www.manaraa.com

Wat
hed Data Stru
tures for QBF SolversIan Gent1, Enri
o Giun
higlia2, Massimo Narizzano2, Andrew Rowley1, andArmando Ta

hella21 Dept. of Computer S
ien
e, University of St. Andrews2 DIST - Universit�a di GenovaAbstra
t. In the last few years, we have seen a tremendous boost inthe
apa
ity of SAT solvers, su
h boost mostly due to Chaff. Chaffowes some of its eÆ
ien
y to its \two-literal wat
hing" data stru
ture.In this paper we present wat
hed data stru
tures for Quanti�ed BoleanFormula (QBF) satis�ability solvers. In parti
ular, we propose (i) twoChaff-like literal wat
hing s
hemes for unit
lause dete
tion; (ii) a\
lause wat
hing" s
hema suited for dete
ting pure literals; and (iii)a \quanti�er wat
hing" s
hema for the dete
tion of void quanti�ers. Wehave
ondu
ted an experimental evaluation of the proposed data stru
-tures, using both randomly generated and real-world ben
hmarks. Ourpreliminary results indi
ate that
lause wat
hing is very e�e
tive, whilethe other data stru
tures do not have signi�
ant e�e
ts.1 Introdu
tionIn the last few years, we have seen a tremendous boost in the
apa
ity of SATsolvers, su
h boost mostly due to Chaff. Chaff is based on DPLL pro
e-dure [1, 2℄, and owes part of its eÆ
ien
y to its data stru
tures designed forthe spe
i�
 look-ahead it implements, i.e., unit-propagation. The basi
 idea isto dete
t unit
lauses by wat
hing two unassigned literals per
lause. As soonas one of the wat
hed literals is assigned, another unassigned literal is lookedfor in the
lause: failure to �nd one implies that the
lause is unit. The mainadvantage of any su
h pro
edure is that, when a literal is given a truth value,only its wat
hed o

urren
es are assigned. This is to be
ontrasted to traditionalDPLL implementations where, when assigning a variable, all its o

urren
es are
onsidered. This simple idea
an be realized in various ways, di�ering for the spe-
i�
 operations done when assigning a wat
hed literal or when ba
ktra
king (see,e.g., [3{5℄). In Chaff, ba
ktra
king requires a
onstant number of operations.See [4℄ for more details.In this paper we ta
kle the problem of designing, implementing and exper-imenting with wat
hing data stru
tures for DPLL-based QBF solvers. In par-ti
ular, we propose (i) two Chaff-like literal wat
hing s
hemes for unit
lausedete
tion; (ii) a \
lause wat
hing" s
hema suited for dete
ting pure literals; and(iii) a \quanti�er wat
hing" s
hema for the dete
tion of void quanti�ers. Wehave implemented su
h wat
hing stru
tures, and we
ondu
ted an experimentalevaluation, using both randomly generated and real-world ben
hmarks. Our pre-liminary results indi
ate that
lause wat
hing is very e�e
tive, while the other

www.manaraa.com

data stru
tures do not have signi�
ant e�e
ts. We are
urrently running a widerset of ben
hmarks, whose results will be presented in the full paper.The paper is stru
tured as follows. We �rst introdu
e some basi
 terminologyand notation (x2). In x3, we brie
y present the standard data stru
tures, leavingtheir detailed presentation to the full paper. The wat
hed data stru
tures thatwe propose are
omprehensively des
ribed in x4. We end the paper with theexperimental analysis (x5).2 Basi
 de�nitionsWe take for granted the de�nitions of variable, literal,
lause. Notationally, if lis a literal, we write l as an abbreviation for x if l = :x, and for :l otherwise.A QBF is an expression of the formQ1x1 : : : Qnxn� (n � 0) (1)where every Qi (1 � i � n) is a quanti�er (either existential 9 or universal 8);x1; : : : ;xn are sets of variables; and � is a set of
lauses in x1 [: : : [xn. Weassume that no variable o

urs twi
e in a
lause; that x1; : : : ;xn are pairwisedisjoint; and that Qi 6= Qi+1 (1 � i < n). In (1), Q1x1 : : : Qnxn is the pre�x, �is the matrix, and Qi is the bounding quanti�er of ea
h variable in xi.The semanti
s of a QBF '
an be de�ned re
ursively as follows:1. If the matrix of '
ontains an empty
lause then ' is False.2. If the matrix of ' is the empty set of
lauses then ' is True.3. If ' is 9x and x 2 x, ' is True if and only if 'x or ':x are True.4. If ' is 8x and x 2 x, ' is True if and only if 'x and ':x are True.If ' is a QBF and l is a literal, 'l is the QBF1. whose matrix � is obtained from the matrix of ' by deleting the
lauses Csu
h that l 2 C, and removing l from the others, and2. whose pre�x is obtained from the pre�x of ' by deleting the variables noto

urring in �. Void quanti�ers (i.e., quanti�ers not binding any variable)are also eliminated.As usual, we say that a QBF ' is satis�able i� ' is True.On the basis of the semanti
s, a simple re
ursive pro
edure for determiningthe satis�ability of a QBF ', simpli�es ' to 'x and/or ':x if x is in the leftmostset of variables in the pre�x, until either an empty
lause or the empty setof
lauses is produ
ed: On the basis of the satis�ability of 'x and ':x, thesatis�ability of '
an be determined a

ording to the semanti
s of QBFs.Most of the
urrent QBF solvers are based on su
h simple pro
edure. How-ever, in order to prune the sear
h tree, they introdu
e some improvements.The �rst improvement is that it is possible to dire
tly
on
lude that a QBFis unsatis�able if the matrix
ontains a
ontradi
tory
lause, i.e., a
lause withno existential literals. (Noti
e that the empty
lause is also
ontradi
tory).Then, if a literal l is unit or pure in a QBF ', then '
an be simpli�ed to'l. We say that a literal l is

www.manaraa.com

{ Unit if the matrix
ontains a unit
lause in l, i.e., a
lause of the formfl; l1; : : : ; lmg (m � 0) with (i) l existential; and (ii) ea
h literal li (1 � i �m) universally quanti�ed inside the quanti�er binding l. For example, bothx1 and x2 are unit in any QBF of the form:: : :9x18y19x2 : : : ffx1; y1g; fx2g; : : :g:{ Pure if either l is existential and l does not belong to any
lause in �; or lis universal and l does not belong to any
lause in �. For example, in thefollowing QBF, the pure literals are y1 and x1:8y19x18y29x2ff:y1; y2; x2g; fx1;:y2:x2gg:In the above example, noti
e that after y1 and x1 are assigned, :y2
an beassigned be
ause is pure, and then x2
an be assigned be
ause is unit. Thissimple example shows the importan
e of implementing pure literal �xing inQBFs: The assignment of a pure existential literal may
ause the dete
tionof a pure universal literal, and the assignment of a pure universal literal may
ause the dete
tion of unit literals.Finally, all QBF solvers implement some heuristi
 in order to de
ide the best(among those admissible) literal to be used for bran
hing.3 Unwat
hed Data Stru
turesThe main requirements of any data stru
ture in a QBF solver is to dete
t keyevents. The key events that we want to dete
t are1. The o

urren
e of unit or pure literals.2. The presen
e of
ontradi
tory
lauses in the matrix.3. The presen
e of void quanti�ers in the pre�x: This allows the removal of thequanti�er from the pre�x.4. The presen
e of the empty set of
lauses: This allows to immediately ba
k-tra
k to the last universal variable whose right bran
h has not been exploredyet.All su
h events are to be dete
ted while des
ending the sear
h tree assigningvariables. When a variable is assigned, data stru
tures get updated and ea
h
ondition
he
ked. Of
ourse,
hanges are stored so that they
an be undonewhile ba
ktra
king. Here we brie
y des
ribe how su
h events are dete
ted in ourstandard pro
edure. All details will be given in the full paper.Unit literals and
ontradi
tory
lauses, assuming a literal l is assigned true,are dete
ted while removing l from any
lauses it o

urs in. To perform thisoperation more eÆ
iently, ea
h
lause is �rst sorted into existential and universalliterals. These sets are then sorted into the order in whi
h the variables o

ur inthe pre�x. Further, sin
e a literal
an be removed from any point in the
lause,it is assumed that a linked list data stru
ture is used to hold the literals.

www.manaraa.com

For pure literals, we store whi
h
lauses a variable's literals are
ontainedin. In the same way that a
lause
ontains literals, a variable
an be thoughtto
ontain
-literals. Ea
h of these
-literals
onsists of a
lause and a sign. Thesign of the
-literal is the same as the sign of the literal of the variable in the
lause. The
-literals are then stored in the variable, split into negative andpositive
-literals. Again, a linked list data stru
ture allows removal of any
-literal eÆ
iently. When a
lause is removed, its
-literals of the
lause
an beremoved from the variables left in the
lause. Pure literals have no positive orno negative
-literals.For void quanti�ers, the pro
edure is the same sin
e we
an think of a quan-ti�er in a similar way to a
lause: A quanti�er
ontains q-variables, whi
h
onsistof a variable and a quanti�
ation. As with literals in
lauses, a linked list datastru
ture is required here to allow removal from any part of the quanti�er. Whena q-variable is assigned, it is removed from the quanti�er in whi
h it o

urs.For dete
ting the empty matrix, we keep a
ount of the number of
lauses.When a
lause is marked as removed, this
ount is de
remented and when a
lause is restored, the
ount is in
remented: Clauses are never a
tually removed.4 Wat
hed Data Stru
turesAs has been demonstrated in SAT solvers su
h as Chaff, lazy data stru
tures
an be more eÆ
ient. This is attributed also to the fa
t that
a
he memoryis used more eÆ
iently. One of the requirements of these data stru
tures thatmake this true is that no work should be done on the data stru
ture duringba
ktra
king. To allow this to happen, no literals are ever removed from
lauses,and similarly for q-variables in quanti�ers and
-literals in
lauses. This allowsall the data stru
tures to use arrays in pla
e of linked lists. Here we outline twodata stru
tures for wat
hing literals, and one ea
h for
lauses and quanti�ers.4.1 Two Literal Wat
hingIn SAT solvers, two literal wat
hing is used for the removal of
lauses in additionto the removal of literals from
lauses. In a SAT solver, we are only interestedin �nding a solution; on
e this has been done, no ba
ktra
king is required. Thismeans that we do not
are how many variable assignments it takes to get tothe solution, or if these variable assignments are super
uous. In QBF solversthis is no longer the
ase. We are likely to need to ba
ktra
k upon �nding asolution and so it is important that the empty set of
lauses is dete
ted as soonas possible, and that no variable assignments are made that are not absolutelyne
essary. To fa
ilitate this, when assigning a literal, l, true, we only deal withwat
hed literals from
lauses
ontaining l, but remove all
lauses
ontaining l.The invariants that we wish to uphold in a
lause are as follows:1. The
lause
ontains a true literal and is therefore removed.2. The
lause
ontains no true existential literals and is therefore false.

www.manaraa.com

3. The
lause
ontains one unassigned existential literal and all unassigneduniversals are quanti�ed inside the existential and is therefore unit.4. The
lause
ontains two unassigned wat
hed existential literals.5. The
lause
ontains one unassigned wat
hed existential literal and one unas-signed wat
hed universal literal quanti�ed outside the existential.These should hold in su
h a way that nothing has to be done upon ba
ktra
king.As before, we assume the literals of the
lause are sorted. When removing a literalfrom a
lause, if ever we �nd a literal that satis�es the
lause, the operation isstopped.If the initial literal is an existential, eold, the rules are as follows:1. If we �nd an unassigned, unwat
hed existential, enew to the right of the
urrent one, wat
h enew. Due to sorting, enew must be inside eold, and soinvariant 5
an still hold.2. S
an left to �nd an unassigned, unwat
hed existential, enew.3. If we found the other pointer, and enew, wat
h enew. There must still be twoexistentials wat
hed.4. If we didn't �nd a new pointer or the other pointer, the
lause is now
on-tradi
tory.5. If we found the other pointer eother, but not enew, we must s
an the universalsfrom the left to �nd an unassigned, unmarked universal, unew, quanti�edoutside eother.(a) If we �nd unew, wat
h it.(b) If we don't, we have a unit
lause in eother.6. If we didn't �nd the other pointer, but found enew, we must
arry on s
anningto the left to �nd the other pointer. If we en
ounter another unassignedunwat
hed existential,
all it enew2.(a) If we �nd the other pointer, wat
h the new existential. There must stillbe two existentials wat
hed.(b) If we don't, we must s
an the universals to �nd the wat
hed universal,uother.i. If we found enew and enew2, wat
h enew in pla
e of eold and enew2 inpla
e of uother.ii. If uother is quanti�ed outside enew, wat
h enew.iii. If uother is quanti�ed inside enew, we must s
an to the left to �nd anew universal, unew, that is quanti�ed outside the existential.A. If this is not possible, the
lause is unit in enew.B. If it is found, wat
h enew and move the uother pointer to unew.If the initial literal is a universal, uold, the rules are as follows:1. S
an to the left and try to �nd an unwat
hed existential, enew or the exis-tential wat
hed literal, eother.2. If we �nd enew, wat
h it. It makes more sense to be wat
hing two existentialsif possible.3. If we �nd eother but not enew, we must s
an left and right over the universalsto �nd one that is quanti�ed outside eother.(a) If we �nd it, we wat
h it.(b) If we don't, the
lause must be unit in eother.

www.manaraa.com

4.2 Three Literal Wat
hingIn the above, we
an be wat
hing an existential and a universal as in invariant5 but there might be two unassigned existentials in the
lause. To referen
e thisproblem, we suggest a method where by three literals are wat
hed in a
lause: twoexistentials, and one universal. The invariants for this are as follows (invariants1-3 are as above):4. wat
hed existentials are both unassigned.5. One of the two wat
hed existentials is assigned, and the wat
hed univer-sal literal is unassigned and is quanti�ed outside the wat
hed unassignedexistential literal.In order to determine the other wat
hed literals in the
lause as qui
kly aspossible, ea
h
lause
ontains a set of wat
hed literals. These point to the a
tualwat
hed literals in the
lause. It is now less important that the existential literalsin the
lause are sorted, but universal sorting is still important, sin
e we stillneed to s
an for universals with a proper position in the pre�x. As before, sear
his stopped if a literal that satis�es the
lause is found.If the initial literal is an existential, eold, the rules are as follows:1. Determine the other existential wat
hed literal, eother, and the universalwat
hed literal u.2. If eother is assigned false, �nd a universal literal, usat that satis�es the
lause.(a) If usat exists, stop.(b) If usat does not exist, the
lause is
ontradi
tory.3. If eother is unassigned �nd another unwat
hed existential literal, enew.(a) If enew exists, wat
h it.(b) If enew does not exist, s
an the universals to the right until an unassigneduniversal unew is found that is quanti�ed outside eother.i. If unew exists, wat
h it.ii. If unew does not exist, the
lause is unit in eother.If the initial literal is universal, the rules are as follows:1. Determine the existential wat
hed literals, e1 and e2.2. If e1 and e2 are both unassigned, stop.3. If only one of e1 and e2 are assigned, s
an the universals until an unassigneduniversal, unew, is found that is quanti�ed outside the unassigned existentialwat
hed literal.(a) If unew exists, wat
h it.(b) If unew does not exist, the
lause is unit.4.3 Clause Wat
hingIn
lause wat
hing, we need to dete
t if either or both of the signs of the
-literalsbe
ome empty. For this, we require two wat
hed
-literals per variable, one ofpositive sign, and the other of negative sign.The invariants for
-literal wat
hing are:

www.manaraa.com

1. The variable is pure in one or other of the signs.2. The variable is removed.3. There are two wat
hed
-literals in the variable, one of ea
h sign.When a
-literal is removed, the rules are as follows:1. Sear
h for a new
-literal of the same sign,
new.(a) If
new exists, wat
h it.(b) If
new does not exist, sear
h for an unassigned
-literal of the oppositesign,
o.i. If
o exists, the variable is pure in the sign of
o.ii. If
o does not exist, the variable is removed.4.4 Quanti�er Wat
hingIn two literal wat
hing in SAT solvers, the two literals allow us to dete
t when a
lause only
ontains one item, as well as when it is empty. In quanti�er wat
hing,we only need to know when the quanti�er is empty, and for this, only one wat
hedq-variable is needed per quanti�er.The invariants for q-variable wat
hing are:1. The quanti�er is empty and so removed.2. There is one wat
hed unassigned q-variable in the quanti�er.When we remove the wat
hed q-variable, qold, the rules are as follows:1. Sear
h left and right for an unassigned q-variable, qnew .(a) If qnew exists, wat
h it.(b) If qnew does not exist, remove the quanti�er.5 Experimental AnalysisWe implemented the above ideas in a QBF solvers featuring both
on
i
t andsolution dire
ted ba
kjumping [6℄. In order to test the e�e
tiveness of the wat
heddata stru
tures, we run the 5 di�erent versions of the solver:1.
sbj represents the basi
 solver with the standard data stru
tures,2.
sbj+2wl is
sbj plus two literal wat
hing, as des
ribed in x 4.1,3.
sbj+3wl is
sbj plus three literal wat
hing, as des
ribed in x 4.2,4.
sbj+w
l is
sbj plus wat
hing
lauses, as des
ribed in x 4.3, and5.
sbj+wqt is
sbj plus wat
hing quanti�ers, as des
ribed in x 4.4.We
onsidered all the 322 real world problems available at www.qbflib.org,ex
luding the robot problems. Of these 322 problems, all the solvers (i) timed outon 93, and (ii) were able to solve 28 in 0 se
onds. The results on the remaining201 problems are shown in Figure 1. In the �gure, on the y-axis there is thetime taken by ea
h pro
edure to solve the number of instan
es spe
i�ed on thex-axis. The time out is 7200s.

www.manaraa.com

20 40 60 80 100 120 140 160 180 200
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

CP
U

TIM
E

[S
]

of PROBLEMS

CSBJ
CSBJ+WQT
CSBJ+2WL
CSBJ+3WL
CSBJ+WCL

Fig. 1. Performan
es of
sbj augmented with wat
hed data stru
tures on real-worldinstan
es.As it
an be seen, neither the two nor the three literal wat
hing stru
tures
ause a speed-up in the performan
es. One reason
ould be that the averagelength of
lauses is 3.8. On the positive side, we see that wat
hing
lauses providesa signi�
ant boost: For example, to solve 167 instan
es out of the 201
onsidered,
sbj+w
l takes 10s, while the other solvers take 100s.We have
onsidered also instan
es randomly generated a

ording to model Aof [7℄. The results that we got are similar: wat
hing literal and quanti�ers do notprodu
e bene�ts, while wat
hing
lauses
an give orders of magnitude speed-ups.These and other experimental results will be presented in the full paper.Referen
es1. Davis, M., Putnam, H.: A
omputing pro
edure for quanti�
ation theory. Journalof the ACM 7 (1960) 201{2152. Davis, M., Logemann, G., Loveland, D.: A ma
hine program for theorem proving.Journal of the ACM 5 (1962)3. Zhang, H., Sti
kel, M.E.: An eÆ
ient algorithm for unit propagation. In: Pro
eedingsof the Fourth International Symposium on Arti�
ial Intelligen
e and Mathemati
s(AI-MATH'96), Fort Lauderdale (Florida USA) (1996)4. Moskewi
z, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Cha�: Engineeringan EÆ
ient SAT Solver. In: Pro
. DAC. (2001)5. Lyn
e, I., Marques-Silva, J.: EÆ
ient data stru
tures for fast sat solvers. In: Pro-
eedings of the 5th International Symposium on the Theory and Appli
ations ofSatis�ability Testing (SAT'02). (2002)6. Giun
higlia, E., Narizzano, M., Ta

hella, A.: Ba
kjumping for Quanti�ed BooleanLogi
 Satis�ability. Arti�
ial Intelligen
e 144 (2003)7. Gent, I., Walsh, T.: Beyond NP: the QSAT phase transition. In: Pro
. AAAI. (1999)648{653

